Primitive flag-transitive generalized hexagons and octagons
نویسندگان
چکیده
Suppose that an automorphism group G acts flag-transitively on a finite generalized hexagon or octagon S, and suppose that the action on both the point and line set is primitive. We show that G is an almost simple group of Lie type, that is, the socle of G is a simple Chevalley group.
منابع مشابه
Flag-transitive Point-primitive symmetric designs and three dimensional projective special linear groups
The main aim of this article is to study (v,k,λ)-symmetric designs admitting a flag-transitive and point-primitive automorphism group G whose socle is PSL(3,q). We indeed show that the only possible design satisfying these conditions is a Desarguesian projective plane PG(2,q) and G > PSL(3,q).
متن کاملFlag-transitive point-primitive $(v,k,4)$ symmetric designs with exceptional socle of Lie type
Let $G$ be an automorphism group of a $2$-$(v,k,4)$ symmetric design $mathcal D$. In this paper, we prove that if $G$ is flag-transitive point-primitive, then the socle of $G$ cannot be an exceptional group of Lie type.
متن کاملSharply 2-transitive groups of projectivities in generalized polygons
The group of projectivities of (a line of) a projective plane is always 3-transitive. It is well known that the projective planes with a sharply 3-transitive group of projectivities are classi/ed: they are precisely the Pappian projective planes. It is also well known that the group of projectivities of a generalized polygon is 2-transitive. Here, we classify all generalized quadrangles, all /n...
متن کاملOn primitivity and reduction for flag-transitive symmetric designs
We present some results on flag-transitive symmetric designs. First we see what conditions are necessary for a symmetric design to admit an imprimitive, flag-transitive automorphism group. Then we move on to study the possibilities for a primitive, flag-transitive automorphism group, and prove that for λ ≤ 3, the group must be affine or almost simple, and finally we analyse the case in which a ...
متن کاملSolution to an open problem on extremal generalized hexagons
A finite generalized 2d-gon of order (s, t) with d ∈ {2, 3, 4} and s 6= 1 is called extremal if t attains its maximal possible value sed , where e2 = e4 = 2 and e3 = 3. The problem of finding combinatorial conditions that are both necessary and sufficient for a finite generalized 2d-gon of order (s, t) to be extremal has so far only be solved for quadrangles and octagons. In this paper, we obta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 115 شماره
صفحات -
تاریخ انتشار 2008